Home-immediately access 800+ free online publications. Download CD3WD (680 Megabytes) and distribute it to the 3rd World. CD3WD is a 3rd World Development private-sector initiative, mastered by Software Developer Alex Weir and hosted by GNUveau_Networks (From globally distributed organizations, to supercomputers, to a small home server, if it's Linux, we know it.)ar.cn.de.en.es.fr.id.it.ph.po.ru.sw

CLOSE THIS BOOKNitrogen Fixing Trees Highlights (Winrock, 1990-1997, 100 p.)
VIEW THE DOCUMENT(introduction...)
VIEW THE DOCUMENTAcacia koa - Hawaii's most valued native tree
VIEW THE DOCUMENTAcacia leucophloea - shade and fodder for livestock in arid environments
VIEW THE DOCUMENTAlnus acuminata: valuable timber tree for tropical highlands
VIEW THE DOCUMENTAlbizia saman: pasture improvement, shade, timber and more
VIEW THE DOCUMENTCasuarina junghuhniana: a highly adaptable tropical casuarina
VIEW THE DOCUMENTEnterolobium cyclocarpum: the ear pod tree for fasture, fodder and wood
VIEW THE DOCUMENTErythrina variegata: more than a pretty tree
VIEW THE DOCUMENTInga edulis: a tree for acid soils in the humid tropics
VIEW THE DOCUMENTPithecellobium dulce - sweet and thorny
VIEW THE DOCUMENTPterocarpus indicus - the majestic n-fixing tree
VIEW THE DOCUMENTRobinia pseudoacacia: temperate legume tree with worldwide potential
VIEW THE DOCUMENTAcacia nilotica - pioneer for dry lands
VIEW THE DOCUMENTAcacia saligna - for dryland fodder and soil stabilization
VIEW THE DOCUMENTAcacia senegal: gum tree with promise for agroforestry
VIEW THE DOCUMENTAcacia seyal - multipurpose tree of the Sahara desert
VIEW THE DOCUMENTAcacia tortilis: fodder tree for desert sands
VIEW THE DOCUMENTAlnus nepalensis: a multipurpose tree for the tropical highlands
VIEW THE DOCUMENTCasuarina equisetifolia: an old-timer with a new future
VIEW THE DOCUMENTCasuarina glauca: a hardy tree with many attributes
VIEW THE DOCUMENTChamaecytisus palmensis: hardy, productive fodder shrub
VIEW THE DOCUMENTDalbergia latifolia: the high-valued Indian rosewood
VIEW THE DOCUMENTDalbergia melanoxylon: valuable wood from a neglected tree
VIEW THE DOCUMENTErythrina edulis: multipurpose tree for the tropical highlands
VIEW THE DOCUMENTErythrina sandwicensis - unique Hawaiian NFT
VIEW THE DOCUMENTHippopha rhamnoides: an NFT valued for centuries
VIEW THE DOCUMENTLeucaena diversifolia - fast growing highland NFT species
VIEW THE DOCUMENTLeucaena: an important multipurpose tree
VIEW THE DOCUMENTOlneya tesota - a potential food crop for hot arid zones
VIEW THE DOCUMENTHoney mesquite: a multipurpose tree for arid lands
VIEW THE DOCUMENTPongamia pinnata - a nitrogen fixing tree for oilseed
VIEW THE DOCUMENTGuazuma ulmifolia: widely adapted tree for fodder and moreli
VIEW THE DOCUMENTFaidherbia albida - inverted phenology supports dryzone agroforestry
VIEW THE DOCUMENTGleditsia triacanthos - honeylocust, widely adapted temperate zone fodder tree
VIEW THE DOCUMENTAndira inermis: more than a beautiful ornamental tree
VIEW THE DOCUMENTErythrina poeppigiana: shade tree gains new perspectives
VIEW THE DOCUMENTAlbizia procera - white siris for reforestation and agroforestry
VIEW THE DOCUMENTAlbizia odoratissima - tea shade tree
VIEW THE DOCUMENTAdenanthera pavonina: an underutlized tree of the humid tropics
VIEW THE DOCUMENTAcacia mangium: an important multipurpose tree for the tropic lowlands
VIEW THE DOCUMENTAcacia auiculiformis - a multipurpose tropical wattle
VIEW THE DOCUMENTPentaclethra microphylla: a multipurpose tree from Africa lwith potential for agroforestry in the tropics
VIEW THE DOCUMENTMyroxylon balsam and much more
VIEW THE DOCUMENTOugeinia dalbergioides: a multipurpose tree for sub-tropical and tropical mountain regions
VIEW THE DOCUMENTProsopis alba and prosopis chilensis: subtropical semiarid fuel and fodder trees
VIEW THE DOCUMENTSesbania sesban: widely distributed multipurpose NFT
VIEW THE DOCUMENTProsopis cineraria: a multipurpose tree for arid areas
VIEW THE DOCUMENTJuliflorae acacias: new food source for the sahel
VIEW THE DOCUMENTSesbania grandiflora: NFT for beauty, food, fodder and soil improvement
VIEW THE DOCUMENTAcacia aneura - a desert fodder tree

Acacia aneura - a desert fodder tree

Acacia aneura is known as mulga in its native Australia where it is one of the best known species in the genus. Mulga is the Aboriginal word for a long narrow shield made of acacia wood. It is probably the most important woody forage plant in Australia because it is palatable, abundant and widespread in regions of low rainfall. Its use as an exotic. however, has been restricted by its relatively slow growth rate and its limited capacity to regenerate after fire or severe branch lopping.

Acacia aneura repented with permission, M. Simmons, 1981. Inset map shows natural distribution of mulga in Australia (Turnbull et al. 1986).


Acacia aneura F. Muell. ex Benth. is one of many thornless acacias endemic to Australia. It occurs as a 10-15 m tall, often single stemmed tree in higher rainfall areas but is a 2-3 m high shrub in dry situations or on very shallow soils. Its form and phyllode morphology are exceptionally variable (Midgley and Gunn 1985). The phyllodes range from short and needle-like to long (20 cm), broad (1 cm) and net. Very fine hairs give the foliage an attractive silverygrey appearance.

Small yellow flowers form spikes 1.5-2.0 cm long Thin. flat membranous pods. 2-5 cm long, usually with an obvious narrow wing along their edge, contain dark brown seeds. each with a small pale aril at the base.

Flowering depends on favorable weather conditions and only late summer flowering followed by winter rain leads to seed set (Davies 1976).


Mulga is the one of the dominant species in Australian shrub woodlands. Natural populations extend over an area of 1.5 million km² chiefly in the arid climates where the annual rainfall is 200-250 mm. Mulga ranges in elevation from sea level to 300 m elevation. In many of the drier parts of its distribution mulga occurs as the only species in groves up to 50 m wide and 400 m long with intergrove areas acting as water catchments to provide substantial run-on water.

In the eastern part of its range in northern New South Wales and Queensland mulga is found in semiarid conditions with a mean annual rainfall of 300-500 mm. It experiences hot summers and cool winters with light frosts. Soils supporting mulga are usually acidic sands or sandy loams, which permit easy filtration of water into the upper horizons, but are usually very low in nitrogen and available phosphorus (Turnbull 1986). Acacia aneura can live for more than 50 years, it is drought-tolerant, but very fire sensitive (Kube 1987).


The wide variability in soils and climate together with a high degree of polymorphism suggests that major provenance differences will occur in growth rates and drought and frost tolerance. International provenance trials were initiated in 1984 by FAO and CSIRO Division of Forestry and Forest Products. Canberra (Midgley and Gunn 1985) and trials were established in South Asia the Middle East, Africa and South America.


The heartwood of mulga is dark brown with contrasting markings of golden yellow; the sapwood is white. The wood is very hard, heavy (850-1100 kg/m³) and durable in the ground: it turns well and takes a high polish (Boland et al. 1984). Mulga also makes an excellent firewood and charcoal. In Australia the wood has been used extensively for fence posts but a log size rarely exceeding 2 m x 25 cm usually restricts the use of the wood to small turnery items.


In many parts of Australia mulga forms a significant part of a sheep's diet at all times of the year but without supplementary high quality feed it supplies protein and energy barely sufficient for maintenance of dry-range sheep (Goodchild and McMeniman 1987). Phyllodes have a high crude protein level (11-16%), low phosphorus content (0.05-0.12%) and good palatability (Turnbull et al. 1986, Vercoe in Boland, 1987). Excessive grazing may result in the death of mulga.


Mulga can be used in arid areas to provide shelter and shade, its attractive silvery grey foliage makes it a popular choice for amenity plantings. The Australian Aborigines ground the mulga seed for flour. The seeds have a protein content comparable to dried split peas or peanuts (Caffin et al. 1980). Aborigines also used the resinous phyllodes of desert mulga form as an adhesive resin (Turnbull et al. 1986).


For good germination. seed (50,000110,000/kg) should be scarified by mechanical abrasion or immersed in undiluted sulfuric acid (95% 36N) for 30 minutes and then thoroughly washed in water. Alternatively, immersion in hot water (90°C) for 1 minute will usually break dormancy (Doran and Gunn 1987). Seeds sown in a germination tray are ready for separating into containers within 10 days. The potting mix needs to drain freely but have good moisture holding capacity (Kube 1987).

Nursery growth is slow with seedlings often taking 6-8 months to reach 20 cm tall. When transplanted to the field the seedlings usually require several months without severe moisture stress to survive and in arid areas may need supplementary irrigation. Established seedlings have the ability to survive severe drought. They develop a long tap root and an extensive lateral root system in the top 30 cm of the soil. Acacia aneura needs to be protected from browsing animals while young.


Growth rate is generally slow but is related to moisture conditions. In central Australia planted specimens receiving an average of 370 mm of rainfall a year grew in ten years into multi-stemmed shrubs 3 m tall and 2-4 cm dbh with a crown diameter of 2 m (Kube 1987). Cultivated specimens receiving regular irrigation have reached 10 m tall and 10 cm dbh in 10 years. In trials where rainfall is relatively high, the Charleville, Queensland provenance a broad phyllode form, has grown more rapidly than provenances from central Australia (Ryan and Bell 1989). Trees with different phyllode forms have been observed to have different growth rates (Fox 1980).


A. aneura forms nodules with Rhizobium with which it exhibits a degree of specificity (Roughley 1987). Ectomycorrhizal associations have been observed and there is almost certainly VA mycorrhizal symbiosis (Reddell and Warren 1987).


In its natural habitat A. aneura is subject to partial defoliation by a range of insects and root damage by termites. Termite damage was light (4% mortality) to moderate (30% mortality) to two provenances aged 18 months in a trial in Zimbabwe (Mitchell 1989).


With its relatively slow growth rate and irregular seeding habits A. aneura is unlikely to become a serious weed.


Boland, D.J., M.H. Brooker, G.M. Chippendale, N. Hall, B.P.M. Hyland, R.D. Johnston, D A. Kleinig and J.D. Turner. 1984. Forest trees of Australia. 4th Ed. Nelson-CSIRO, Melbourne.

Boland, D.J. (ed). 1987. Trees for the tropics: Growing Australian multipurpose trees and shrubs in
developing countries. ACIAR Monograph No. 10. ACIAR. Canberra, Australia.

Caffin. N.,R. Bell. G. Nitchie, S. Weston and N. Ho. 1980. Protein and mineral content of several species of Acacia seeds. Mulga Research Centre Annual Rep. No. 3, 1979. W. Australian Inst. of Tech., Bentley, Australia. p. 43-44.

Davies, S.J.J.F. 1976. Studies of the flowering season and fruit production of some arid zone shrubs and l trees in western Australia. J. of Ecology 64:665-687.

Fox, J.E.D. 1980. Stability in mulga stands in times of drought. in Mulga Research Centre Annual Report No. 3, 1979. W. Australian Inst. of Tech., Bentley, Australia.

Midgley, S.J. and B.V. Gunn. 1985. Acacia uneura seed collections for international provenance trials. Forest Genetic Resources Information 13:21-29.

Simmons. M. 1981. Acacias of Australia. Thomas Nelson. Melbourne.

Turnbull. J.W. (ed). 1986. Multipurpose Australian trees and shrubs. ACIAR Monograph No. 1. ACIAR. Canberra, Australia.

Turnbull. J.W. (ed). 1987. Australian acacias in developing, countries. ACIAR Proceedings No. 16.
ACIAR. Canberra Australia.